Sugar and auxin signaling pathways respond to high-temperature stress during anther development as revealed by transcript profiling analysis in cotton.

نویسندگان

  • Ling Min
  • Yaoyao Li
  • Qin Hu
  • Longfu Zhu
  • Wenhui Gao
  • Yuanlong Wu
  • Yuanhao Ding
  • Shiming Liu
  • Xiyan Yang
  • Xianlong Zhang
چکیده

Male reproduction in flowering plants is highly sensitive to high temperature (HT). To investigate molecular mechanisms of the response of cotton (Gossypium hirsutum) anthers to HT, a relatively complete comparative transcriptome analysis was performed during anther development of cotton lines 84021 and H05 under normal temperature and HT conditions. In total, 4,599 differentially expressed genes were screened; the differentially expressed genes were mainly related to epigenetic modifications, carbohydrate metabolism, and plant hormone signaling. Detailed studies showed that the deficiency in S-adenosyl-L-homocysteine hydrolase1 and the inhibition of methyltransferases contributed to genome-wide hypomethylation in H05, and the increased expression of histone constitution genes contributed to DNA stability in 84021. Furthermore, HT induced the expression of casein kinasei (GhCKI) in H05, coupled with the suppression of starch synthase activity, decreases in glucose level during anther development, and increases in indole-3-acetic acid (IAA) level in late-stage anthers. The same changes also were observed in Arabidopsis (Arabidopsis thaliana) GhCKI overexpression lines. These results suggest that GhCKI, sugar, and auxin may be key regulators of the anther response to HT stress. Moreover, phytochrome-interacting factor genes (PIFs), which are involved in linking sugar and auxin and are regulated by sugar, might positively regulate IAA biosynthesis in the cotton anther response to HT. Additionally, exogenous IAA application revealed that high background IAA may be a disadvantage for late-stage cotton anthers during HT stress. Overall, the linking of HT, sugar, PIFs, and IAA, together with our previously reported data on GhCKI, may provide dynamic coordination of plant anther responses to HT stress.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isolation of Brassica napus MYC2 gene and analysis of its expression in response to water deficit stress

Manipulation of stress related transcription factors to improve plant stress tolerance is a major goal of current biotechnology researches. MYC2 gene encodes a key stress-related transcription factor involved in Jasmonate (JA) and abscisic acid (ABA) signaling pathways in Arabidopsis. Brassica napus, as a globally important oilseed crop, is a close relative of Arabidopsis.  In the present study...

متن کامل

Response and Tolerance Mechanism of Cotton Gossypium hirsutum L. to Elevated Temperature Stress: A Review

Cotton is an important multipurpose crop which is highly sensitive to both biotic and abiotic stresses. Proper management of this cash crop requires systematic understanding of various environmental conditions that are vital to yield and quality. High temperature stress can severely affect the viability of pollens and anther indehiscence, which leads to significant yield losses. Cotton can resp...

متن کامل

Transcriptome Profiling Analysis Reveals That Flavonoid and Ascorbate-Glutathione Cycle Are Important during Anther Development in Upland Cotton

BACKGROUND Previous transcriptome profiling studies have investigated the molecular mechanisms of pollen and anther development, and identified many genes involved in these processes. However, only 51 anther ESTs of Upland cotton (Gossypium hirsutum) were found in NCBI and there have been no reports of transcriptome profiling analyzing anther development in Upland cotton, a major fiber crop in ...

متن کامل

High temperature injury and auxin biosynthesis in microsporogenesis

Plant reproductive development is more sensitive than vegetative growth to many environmental stresses. High temperature (HT) injury is becoming an increasingly serious problem due to recent global warming. In wheat, barley, and other crops, the early phase of anther development is most susceptible to HT. I and my colleagues recently demonstrated that HT causes cell proliferation arrest and rep...

متن کامل

Two novel mitogen-activated protein signaling components, OsMEK1 and OsMAP1, are involved in a moderate low-temperature signaling pathway in rice.

Rice (Oryza sativa) anther development is easily damaged by moderately low temperatures above 12 degrees C. Subtractive screening of cDNA that accumulated in 12 degrees C-treated anthers identified a cDNA clone, OsMEK1, encoding a protein with features characteristic of a mitogen-activated protein (MAP) kinase kinase. The putative OsMEK1 protein shows 92% identity to the maize (Zea mays) MEK ho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 164 3  شماره 

صفحات  -

تاریخ انتشار 2014